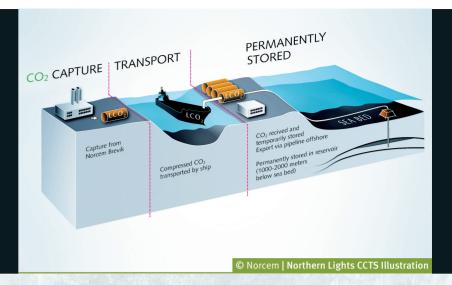
SPECIAL FEATURE | CRYOGENIC TECHNOLOGIES FOR CCTUS


SPECIAL FEATURE

Cryogenic technologies for CCTUS

Carbon dioxide capture, transportation, utilisation & storage

By Stephen B. Harrison, sbh4 consulting

"It is also likely that liquid CO₂ distribution for carbon capture and sequestration (CCS) projects will be required for many years..."

CTUS refers to carbon dioxide (CO₂) capture, transportation, utilisation, and storage. CO₂ transportation or distribution is often required between the CO₂ capture location and the place where the CO₂ will either be permanently stored, or utilised.

Moving large amounts of CO,

cost-effectively can be achieved through liquefaction of the CO₂. The alternative is compression of the CO₂ to more than 80 bar so that it exists as dense, supercritical CO₂ and can be transmitted by pipeline.

Cryogenics makes CO₂ compact for transportation and storage. Gaseous CO₂ at atmospheric pressure and

ambient temperature requires 588 times more volume than liquid CO₂.

Cryogenic CO₂ capture technologies are ideal where liquid CO₂ distribution will be required to the utilisation or sequestration location. This will be the case where the CO₂ is destined to be used in food, beverage, or other industrial gases applications.

It is also likely that liquid CO₂ distribution for carbon capture and sequestration (CCS) projects will be required for many years, since almost no CO₂ pipeline infrastructure exists today. For example, the Northern Lights CCS project (which will permanently store CO₂ emissions from a waste to energy plant and Norcem's Brevik cement plant in Norway) will use liquid CO₂ distribution. Ships will transport liquid CO₂ from the capture locations to the underground injection location, offshore in the North Sea.

Other gas-phase CO. capture

Other gas-phase CO₂ capture technologies may be more suitable if CO₂ compression and pipeline transmission is required, or if onsite gaseous CO₂ utilisation is possible. In these cases, the energy requirement can potentially be reduced due to the

avoidance of the power needed to liquefy CO_2 .

CO₂ capture through direct liquefaction

Direct liquefaction of mixed gases is difficult. For example, when CO₂ is present in a mixture with nitrogen, the nitrogen is incondensable at the temperature at which the CO₂ can be liquefied. This means that the CO₂ liquefier heat exchanger becomes shrouded with nitrogen gas and there is no longer any contact with the CO₂ gas to be liquefied.

The potential solution would be to vent nitrogen gas from the system, but the vent gas would also contain CO_2 . Much of the CO_2 would be vented and lost, meaning this is rarely a viable solution.

On the other hand, direct liquefaction of very pure CO₂ is viable. In this context, 'very pure' would typically a purity greater than 98%. Biogenic CO₂ released from bioethanol fermentation or brewing produces CO₂ at this purity.

Direct liquefaction of CO₂ from fermentation broths requires drying of the CO₂ prior to liquefaction. This is essential to avoid formation of solid ice particles within the CO₂ liquefier. It also ensures that the CO₂ product is suitable for commercial applications in the food and beverage sector or for metallurgical welding applications.

Companies such as Pentair
Haffmans and SIAD Tecno Project
Industriale (TPI) have installed
hundreds of small-scale direct CO₂
capture and liquefaction installations

worldwide, mostly at breweries.
Similar technology is used to remove
CO₂ during upgrading of biogas
to biomethane. But, in this case
separation of the methane and CO₂ is
required prior to liquefaction. This is
often achieved using a membrane or
amine solvent CO₂ capture process.

Cryogenic carbon capture

It is only recently that technology has been developed for the direct liquefaction of CO₂ from lower concentration CO₂ streams. The US start-up Sustainable Energy Solutions, now part of Chart Industries, has developed the Cryogenic Carbon Capture (CCC) process during the past decade.

CCC does not actually use direct liquefaction of CO_2 , rather it relies on direct sublimation of CO_2 gas to solid CO_2 . Hence it can capture CO_2 from dilute flue gas streams. After the solid CO_2 has been formed, it is dissolved into liquid CO_2 . The product is high purity liquid CO_2 .

The CCC process relies only on electrical power for gas blowers and compressors for its operation. There is no heat input required. The implication is that it is aligned to operation with renewable electricity, meaning that no CO₂ emissions are

created from capturing the CO₂.

A further advantage of the CCC technology is that it sufficiently robust to treat 'dirty' post-combustion flue gases that contain oxides of sulphur or nitrogen. This means that it is ideally suited to capture CO₂ from emissions generated from burning coal, waste, or heavy fuel oil. In contrast, aminebased absorption and molecular sieve adsorption processes for CO₂ capture are very sensitive to sulphur impurities, meaning that a prepurification stage would be required.

Cryocap™ H₂: for SMR CO₂ capture

CO₂ capture from steam methane reformers (SMRs) is often regarded as a 'quick-win' in the decarbonisation of industrial processes. The CO₂ concentration, pressure, and partial pressure in the SMR process gas is high. This leads to cost-effective CO₂ capture. Furthermore, CO₂ has been captured from SMRs for decades so that the CO₂ can be used to make urea fertiliser, when reacted with ammonia that is produced from hydrogen made on the SMR. There is, therefore, a wealth of experience to leverage.

The use of cryogenics to capture and purify CO₂ from SMRs is likely to be the next milestone in the development of CO₂ capture from

these units. The Cryocap^{∞} H₂ process from Air Liquide combines cryogenic separation of CO₂ from the SMR process gas stream with membrane separation of hydrogen.

A demonstration project at an SMR in Port Jérôme, on the river Seine in France, showed that an additional 12% hydrogen yield from the SMR is achievable using the Cryocap™ H₂ process. This can have a tremendous positive impact on operational economics and can help to fund the investment in the Cryocap™ H₂ equipment.

With Cryocap™ H₂ directing more hydrogen to the product stream, there is less hydrogen available for the SMR fired heater, so additional natural gas is required to compensate for the reduced heat energy available. However, the additional hydrogen production can more than offset the

"The use of cryogenics to capture and purify CO_2 from SMRs is likely to be the next milestone in the development of CO_2 capture from these units"

40 | gasworld • June 2023 gasworld.com

cost of the additional natural gas.

If liquid CO₂ is required for food and beverage applications, additional CO₂ purification is required. In the Cryocap™ H₂ process, oxygen is added to react with hydrogen in the CO₂ stream to produce water using catalytic oxidation. The water is then removed on regenerative dryer adsorption beds. Excess oxygen is separated from the liquid CO₂ using cryogenic distillation. Mercury removal is a final polishing stage which is achieved on an activated carbon filter bed.

Captured CO₂ liquefaction and storage

CO₂ liquefaction is achieved using a heat exchanger to condense CO₂ gas. The cold side of the heat exchanger is generally fed with a refrigerant gas from a typical mechanical refrigeration circuit. Electrical power is required to operate the refrigeration equipment, so the process can be decarbonised using renewable electricity.

The CO_2 side of the liquefaction circuit is operated at a pressure of 15 to 25 bar. At elevated pressure, common refrigerant gases such as CO_2 , ammonia or F-Gases can be used to achieve the temperature required to liquefy the CO_2 . This differs from the cryogenic liquefaction process used on

air separation units, where expansion of the air itself on a turbine is used to generate the cold energy required for liquefaction of the air.

As an alternative to mechanical refrigeration, ammonia absorption refrigeration can be used. This process avoids the mechanical compression of a refrigerant gas and derives the cold energy instead from the absorption and desorption of ammonia in water. To drive the ammonia out of the water, heat energy is required. If waste heat is available, this process can be more efficient than mechanical refrigeration.

After liquefaction, CO₂ is stored and transported in tanks which are insulated to minimise boil-off. A small amount of heat ingress to the

storage tank is inevitable. This is due to the temperature difference between ambient air and the liquid ${\rm CO_2}$, which would be around -30°C at 15 bar pressure.

Typically, liquid CO_2 storage tanks are constructed of carbon steel and insulated with polyurethane foam. Often, a refrigeration unit is used to reliquefy boiled off CO_2 . This avoids CO_2 losses and over-pressurisation of the CO_2 storage tank.

Storage of liquid CO₂ differs from cryogenic storage of liquid oxygen, argon and nitrogen which are much colder. They require an austenitic grade of stainless steel for the tank and vacuum insulation to prevent vaporisation of the cryogenic liquid.

42 | gasworld • June 2023 gasworld.com