

Production technology, market and regulatory framework for e-fuels

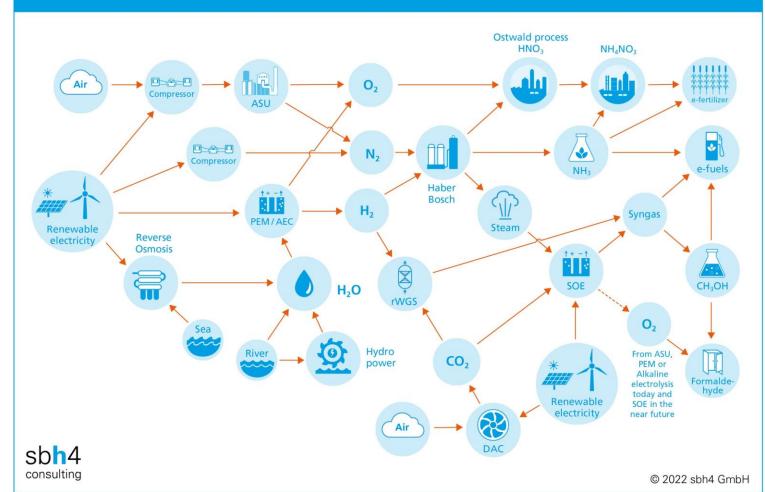
Stephen B. Harrison, Managing Director, sbh4 consulting E-fuels Conference and Exhibition, Barcelona Monday 6th February 2023 14:00pm to 14:40pm

Scope of the discussion and agenda

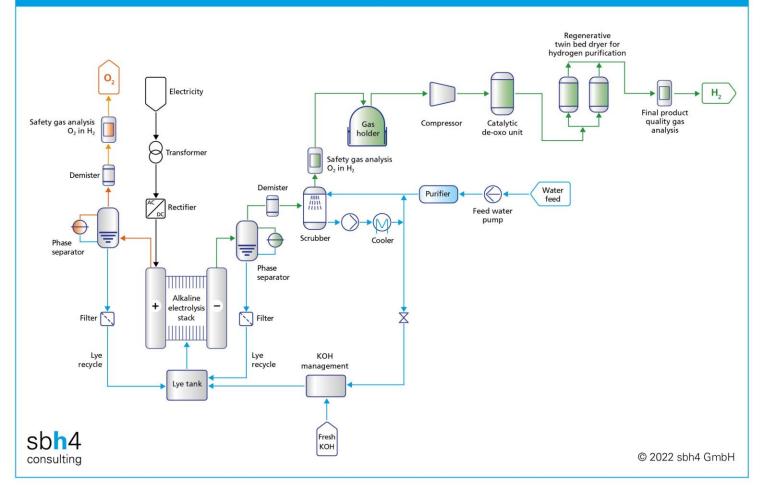
Scope of the discussion

- Production technology for E-Fuels, has been applied and provided by many companies in the EU and around the world
- 2) Creating a target market for E-Fuels
- 3) Enabling the industrialised uptake of E-Fuels
- 4) Forming a market design in the EU
- 5) What might an improved regulatory framework look like?

Agenda

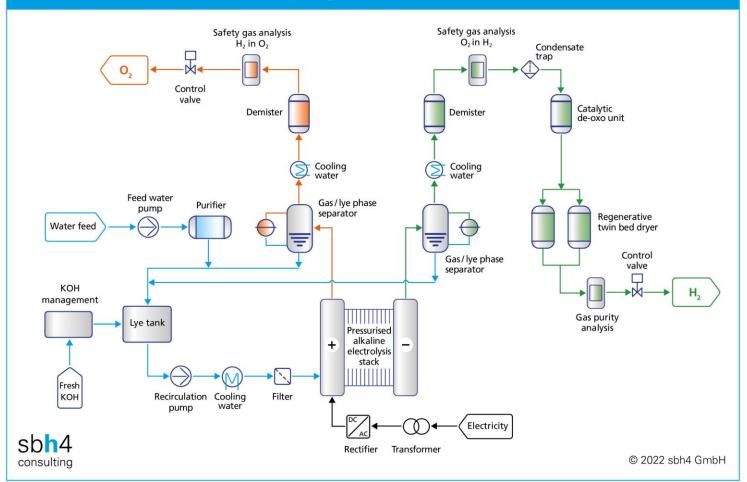

- 1) E-fuels and electrolysis
- 2) Methanol synthesis
- 3) FTS, MTG, E-diesel, e-kerosene and e-gasoline
- 4) Technologies to generate syngas
- 5) Point source capture of CO2, liquefaction and transportation
- 6) Direct Air Capture of CO2
- 7) Markets and motivation
- 8) Concluding remarks

8 January 2023 2

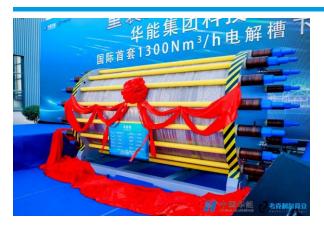

1) E-fuels and electrolysis

Air, water and renewable electricity for integrated e-fuels, e-fertilizers and e-chemicals production

Low pressure alkaline water electrolysis process



AsahiKASEI – Aqualyzer[™] 10MW single-stack atmospheric pressure alkaline electrolyser for 2,000 Nm³ per hour H2, Fukushima Hydrogen Energy Research Field in Namie, Japan


Pressurised alkaline electrolysis process

Pressurised alkaline – stacks are getting bigger and cheaper. PA is in focus for the new generation of Chinese producers.

Cockerill Jingli DQ1300, largest single pressurised alkaline stack on the market

- 6.5MW, 480V, 13,100A
- 1,300 Nm³/hr H₂
- 650 Nm³/hr O₂
- Hydrogen pressure 16 bar
- Operating temperature 90 °C
- Weight 40.7 tonnes

HydrogenPro, Norway

- Test unit 10MW, 2m diameter, 80 tonne stack
- Standard stack 5.5MW, 2.4 tonnes per day hydrogen
- Made at THM JV in Tianjin, China
- Electrodes plated at legacy ASP, Denmark

2) Methanol synthesis

Methanol synthesis is one of the most common chemical processes worldwide

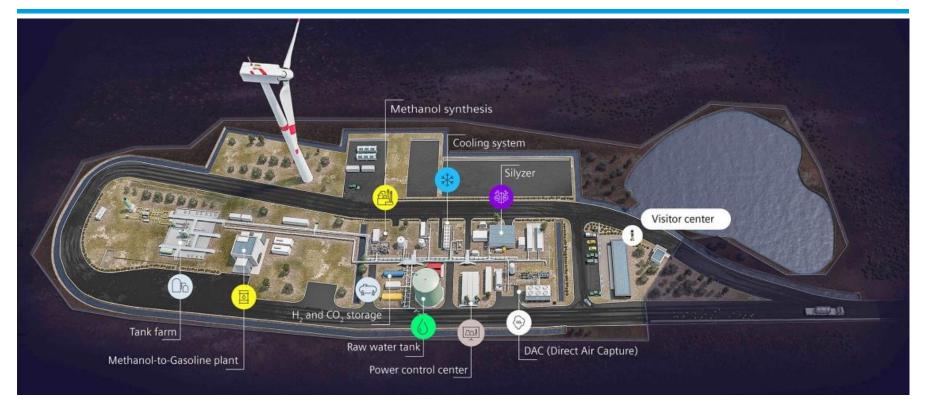
$$CO + 2H_2 \rightarrow CH_3OH$$

- Syngas from natural gas reforming dominant today
- AEC / PEM pathway
 - Green hydrogen from water electrolysis using renewable power, plus...
 - Reverse water gas shift reaction to convert CO2 to CO
 - CO2 captured from industrial, geogenic or biogenic emissions or from direct air capture
- SOEC Co-electrolysis pathway
 - Syngas from co-electrolysis of steam and CO2 on a solid oxide electrolyser
 - CO2 captured from industrial, geogenic or biogenic emissions or from direct air capture

8 January 2023 10

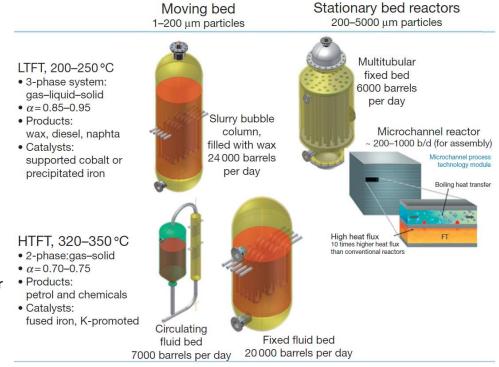
HyNL: green hydrogen to e-methanol with CO2 captured from local waste to energy facility

Liquid wind: e-methanol production from green hydrogen and CO2 captured from local points source emissions, Sweden



- Renewable wind power will make green hydrogen on a PEM electrolyser
- Captured CO₂, from flue gas emissions will be the CO₂ source
- CO₂ will be converted to CO using the reverse water gas shift reaction
- The CO and hydrogen are blended to form syngas
- E-methanol will be produced from the syngas using catalytic reactions
- E-methanol can be converted to synthetic fuels like gasoline using MTG or to diesel and jet using Fischer-Tropsch synthesis

Haru Oni: wind power, electrolysis and DAC sbh4 to e-methanol and MTG, Chile


3) FTS, MTG, E-diesel, e-kerosene and e-gasoline

Fischer Tropsch Synthesis (FTS): chemistry and reactor types.

 $5CO + 11H_2 \rightarrow C_5H_{12} + 5H_2O$ (and many other reactions)

- Produces e-crude: a mix of olefins, gasoline, diesel and jet fractions
 - Distillation is required to refine the e-crude
 - Specificity of the target molecules can be controlled by catalyst and reactor parameters (temperature, pressure, residence time)
- Has been used extensively in large-scale slurry bubble column reactors for gas to liquids and coal to liquids by Sasol, Shell and others for decades
- Heavily exothermic, can be integrated with RWGS for energy efficiency
- Is being implemented in small scale, modular or containerised systems using micro-channel reactors

FTS is key to GTL, CTL, and PtL. It has been operated at scale in various reactor types.

Infinium: integrated Power to Liquids with RWGS and FTS using in-house catalysts.

MTG: Methanol to Gasoline, via DME. HTAS Turkmengaz gas to gasoline (via methanol), Ashgabad. ExxonMobil New Zealand MTG Synthetic Fuels Project.

- 1. Natural gas reforming to make syngas
- 2. Methanol / DME production from syngas
- 3. Methanol / DME to Gasoline

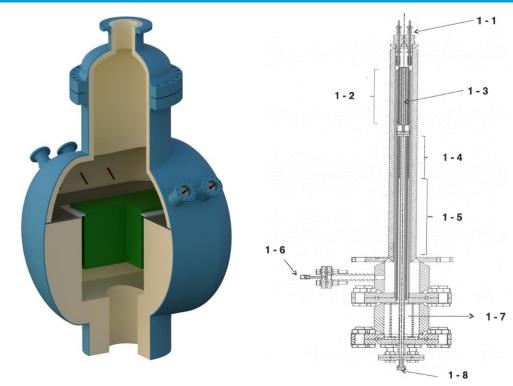
Copyright Haldor Topsøe. All Rights Reserved.

8 January 2023

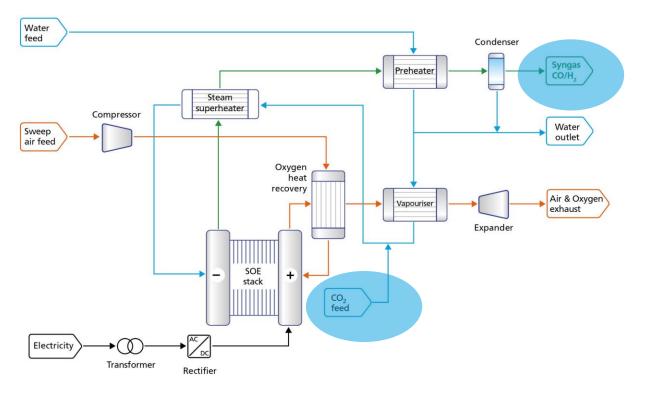
4) Technologies to generate syngas

Technologies to generate syngas for methanol, MTG or FTS

- 1) Natural gas reforming (ATR) or partial oxidation (POx): GTL
- 2) Coal gasification: CTL
- 3) Waste gasification: WtL
- 4) H₂ from electrolysis on AEC, PEM, SOEC plus CO from RWGS: PtL
- 5) Co-electrolysis of steam and CO₂ on SEOC: PtL



Reverse water gas shift (RWGS) chemistry


$$CO_2 + H_2 \rightarrow CO + H_2O$$

- The opposite of the water gas shift (WGS) that is used in reforming to upgrade the H2 content of syngas
- The RWGS reaction (in this direction) has not previously been used extensively
- Heavily endothermic, integration with exothermic FTS will be more efficient
- Electrical heating is possible to use green electrons
- The patented INERATEC RWGS reactor has heat exchange and heating directly prior to the catalytic reaction zone
- TOPSOE eREACT™
 Electrically heated eRWGS also emerging

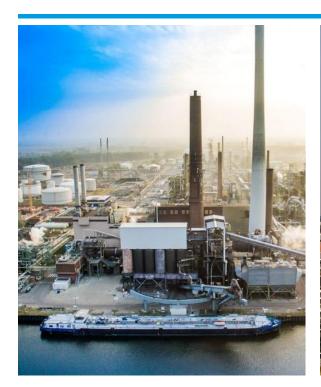
Solid Oxide CO-Electrolysis process for syngas generation

© 2022 sbh4 GmbH

Steam-fed Solid Oxide Electrolysis can use excess heat for high efficiency.

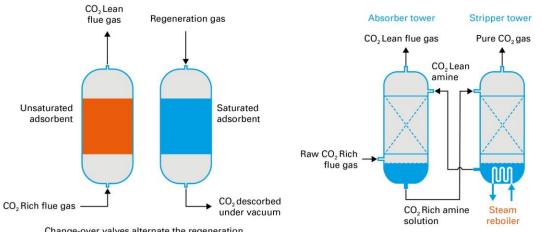
Solid Oxide Electrolysis for energy-efficient e-fuels production

If e-crude is shipped off-site, the steam from FTS can be used to feed the SDE. If e-crude is refined on-site, the steam may either be used for distillation or as SDE feed. If a PEM or alkaline electrolyser is used instead of SDE, the steam from FTS can be used to provide heat for the reverse water gas shift reaction.


Methanol distillation would generally occur on-site. Therefore the steam would be required for distillation and is not available as a feed for the SOE.

© 2022 sbh4 GmbH

Pure hydrogen from PEM and AEC electrolysers and CO from the reverse water gas shift reaction is dominating the first wave of e-fuels PtL projects. Will co-electrolysis on a SOEC be used later, to leverage its advantage?



5) Point source capture of CO2, liquefaction and transportation

Established Carbon Capture Technology – VSA and Amine Solvent

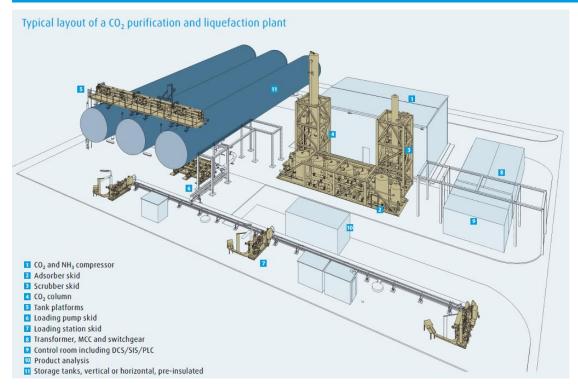
Change-over valves alternate the regeneration gas & the flue gas flow from one bed to the other.

© 2022 sbh4 GmbH

	VSA – vacuum swing adsorption	Amine Solvent with tower contactors
Separation principle	Adsorption	Absorption
Specific energy demand	1.7 GJ/t _{co2} (mostly power)	3 GJ/t _{co2} (mostly heat from steam)
Typical temperature	40°C	40-60°C in absorber, 120°C in stripper
Typical pressure	Cycling between moderate pressure and vacuum	Ambient to 30 bar
Typical CO ₂ removal	< 90 %	>90 %
Typical CO ₂ purity	< 95 %	>99 %
Typical plant size (tonnes per year CO ₂ removal)	>1,000-500,000	40,000 - 4,000,000
Technology maturity level	Commercial with some demonstrations, eg Air Products Port Arthur SMRs, USA	Commercial from many suppliers

- VSA carbon capture uses power as a major input and can therefore use green electrons
- Amine solvent carbon capture uses steam – which could potentially be from an electrical heater fed with green electrons

Amine-solvent CO₂ capture plant recovering CO₂ from SMR, Carburos Metálicos, Repsol Refinery, Spain


CO2 adsorption is an alternative to absorption. VSA has been proven for carbon capture at 2x Air Products SMRs, in Port Arthur, USA.

CO2 purification, liquefaction and storage equipment layout



This process follows CO2 capture. The feed would be circa 98% CO2.

- CO2 cooling & water knock-down
- CO2 compression
- CO2 scrubbing / washing
- CO2 drying (moisture removal)
- Impurities adsorption (mercury etc removal)
- CO2 liquefaction and distillation (ammonia refrigerant on mechanical compression / expansion mechanical cycle)

Liquid CO2 distribution by road or ship

8 January 2023 30

Super-critical CO₂ pipelines operate at pressures of 80 bar and more, and require powerful CO₂ compressors

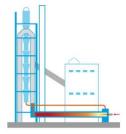
Image Copyright NRG Energy. All Rights Reserved.

Image Copyright MAN Energy Systems

8 January 2023

sbh4

Notes:


- CO₂ emissions are also associated with the energy and power requirements for this industry sector
- These can potentially be decarbonised with renewable power and electrical heating or microwaves
- CCS to capture CO₂ from the process and / or the associated energy production is possible

Steam Methane Reformer

Aluminium smelting

Calciner tower & clinker kiln

Blast furnace

	Oil refining	Aluminium smelting	Cement making	Iron making
Application that releases CO ₂	Hydrogen production from methane reforming for fuels desulphurisation	Reduction of alumina to aluminium using graphite electrodes	Reduction of limestone to calcium oxide	Reduction of iron ore to iron using coke
Chemical reaction pro- ducing CO ₂	$CH_4 + H_2O \rightarrow CO + 3H_2$ $CO + H_2O \rightarrow CO_2 + H_2$	$2AI_2O_3 + 3C \rightarrow 4AI + 3CO_2$	$CaCO_3 \rightarrow CaO + CO_2$	$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
Decarbonisation approach for CO ₂ generated by the process	Use turquoise hydrogen or green hydrogen to avoid the reforming reaction; or feed the reformer with biomethane instead of natural gas	Use carbon from turquoise hydrogen production instead of carbon from fossil fuels to make the electrodes	Replace a portion of the lime- stone with alternative materials such as calcined clay to make clinker for cement	Use hydrogen instead of coke; or substitute coke with carbon from turquoise hydrogen production
Reactions for the decar- bonised process	As above using renewable methane	As above using renewable graphite electrodes	Above reaction can only partially be avoided	As above using renewable carbon, or use hydrogen: $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$
Other industries with similar applications	Ammonia, Urea, Methanol, Gas-to-liquids	Gold and silver refining, electric arc furnace to melt scrap steel	 Lime making, as above Refractory materials, MgCO₃ → MgO + CO₂ Glass making Na₂CO₃, CaCO₃, MgCO₃ 	None

Biogenic CO2

- Carbon-neutral
- Biomass combustion
- Bioethanol fermentation

Geogenic CO2

Unavoidable

CO2 from high temperature heat

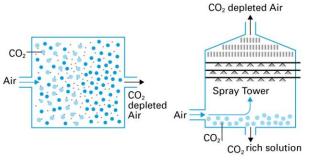
 "Difficult to decarbonize"

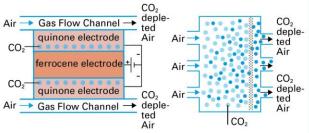
CO2 from process chemistry

"Difficult to decarbonize"

CO2 from fossil-fired power generation

Decarbonise with renewable power and green electrons


6) Direct Air Capture of CO2


DAC technologies for direct air capture of carbon dioxide

sbh4 consulting

Notes:

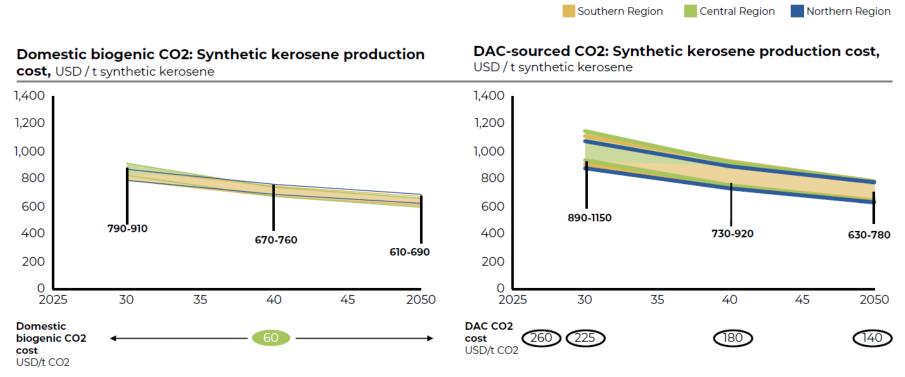
Only the CO₂ separation aspect of each DAC process has been shown

© 2021 sbh4 GmbH

	Climeworks	Carbon Engineering	Verdox	Carbyon
System type	Solid Sorbent	Liquid Absorbant	Solid Sorbent	Solid Sorbent
Technology	Amine-functionalised	Potassium Hydroxide solution/ Calcium Carbonation	quinone–carbon nanotube composite	Thin film coated amine- and/or bicarbonate-based porous membrane
Regeneration	Temperature / Vacuum	Temperature	Electro-Swing	Temperature
Specific Energy Demand	Heat: 2,000 kWh / t_{CO2} Electricity: 650 kWh/ t_{CO2}	NG: 2,777 kWh/t _{co2} or Electricity: 1,500 kWh/t _{co2}	Electricity (only cell, w/o BoP in particular ventilation): 568 kWh/t _{co2}	TBD
Operating Temperature	80-100°C	900°C	Ambient	60-85°C
Technology maturity level	Commercial	Pilot	Laboratory	Theoretical

- Some direct air capture technologies use a combination of heat and power
- Some use only power
- Green electrons can be used to make green CO2

Carbon Engineering, Squamish BC Canada. Climeworks, Hinwil Zurich Switzerland.



Namibia Green Hydrogen and Derivatives Strategy, Nov 2022. Vision is to upgrade green electrons and green hydrogen to e-kerosene using PtL technology to maximise export revenue.

7) Markets and motivation

International shipping of hydrogen, hydrogen carriers and hydrogen derivatives

© 2022 sbh4 GmbH

Commercialisation

status and pilot projects

Global Energy Ventures,

adapting CNG techno-

logy for compressed

hydrogen

shipping

Compressed

hydrogen gas

Liquid Hydrogen

HySTRA-Hydrogen

Energy Supply-chain

Technology Research

Australia to Japan

Association -

LH2 shipping

Liquid Ammonia

Liquid Methanol

Methanol is a widely

tankers up to 50,000

tonnes

traded commodity with

LOHC - Liquid Organic

Hydrogen Carrier (MCH

sed as an example

The HySTOC (Hydro-

gen Supply and Trans-

portation using Liquid

Hydrogen Carriers)

project in Finland

Organic

LNG, Liquefied Natural

Many commercial

LNG production, dis-

tribution, storage and

regasification assets

worldwide

Gas

- Over long distances and at large scale, the additional costs of Power to liquids (versus the alternative of shipping pure hydrogen) can be recovered with shipping cost savings
- If reconversion to hydrogen is required, the economics of Power to Liquids suffers: direct use of the e-fuel is ideal
- E-gasoline (33 to 36 MJ/L) and e-diesel (43 to 49 MJ/kg) have even higher volumetric energy densities than the products shown in the table, and have the advantage of being "drop-in" replacements... but are more complex and more expensive to make

					assa as an example,	
Temperature for trans- portation and storage	Ambient	-253 °C	-33.3 °C	Liquid at ambient temperature	Hydrogenation:150- 200 °C; Transported at ambient temperature; Dehydrogenation: 250-320 °C	–162 °C
Pressure for trans- portation and storage	250 bar	Close to atmospheric pressure	Close to atmospheric pressure	Close to atmospheric pressure	Hydrogenation: above 20 bar; Transported at	Close to atmospheric pressure
portation and storage		prossure	prosoure	prossure	atmospheric pressure; Dehydrogenation:	prossure
					below 5 bar	
Density	0.017 kg/L	0.071 kg/L	0.68 kg/L	0.79 kg/L	0.77 kg/L	0.46 kg/L
Toxicity	non toxic	non toxic	TWA 25 ppm	TWA 200 ppm	TWA 400 ppm	TWA 1,000 ppm
Flammability (% in air)	4-74 %	4-74 %	14.8-33.5 %	6.0-36.5 %	1.2-6.7 %	4 -15 %
Volumetric Lower Hea-	2.43	8,52	12.7	15.7	5.76-8.5	22.2
ting Value (LHV)(MJ/L)						
Gravimetric LHV (MJ/kg)	120	120	18.6	19.9	7.48-11	48.6
Infrastructure readiness	L	L	Н	Н	M	Н
for large scale deploy-						
ment in mid-term H/M/L						

Many commercial

liquid ammonia pro-

duction, distribution

and storage assets

handle ammonia

worldwide with 120

ports locations able to

Hydrogen and CO2 conversion to e-fuels is an important value chain enabler that is a relatively small portion of the capex cost within a typical export-scale project investment.

Waste to energy for green hydrogen mobility: €12 million project, 2019

Hydrogen supply

- 1.25MW Hydrogenics PEM electrolyser
- MAXIMATOR 350 bar Hydrogen Refuelling Station (HRS)
- 425kg high pressure hydrogen buffer storage on the HRS

Hydrogen utilisation

- Fleet of 10 Van Hool A330 Fuel cell buses
- €6 million
- 50% of project cost

Liquid e-fuels are designed to be "drop-in" replacements for fossil fuels

Avoided end-user costs

- Vehicle replacement
- Engine replacement / modification

Avoided infrastructure costs

- Fuel dispenser equipment
- Onsite fuel storage tanks
- Fuel distribution vehicles
- Tank / terminal assets

Avoided service network costs

- Re-tooling vehicle service garage network
- Re-training vehicle service personnel

8) Concluding remarks

- 1) Many technologies for power to liquids (PtL) and e-fuels exist, others are emerging
 - a) At GW-scale, leveraging GTL, CTL and MTG
 - b) With emerging MW-scale micro-channel reactor technologies
 - c) The SOEC Co-electrolysis pathway has advantages and support is required for demonstrations
- 2) Markets for e-fuels exist, but fossil fuels must be displaced with appropriate regulation
 - a) ICE's in land-based mobility, maritime and aviation fuels are addressable markets
 - b) The price advantage for fossil fuels must be eroded through appropriate regulation
 - c) Carbon certification and blending can maximise leverage of existing supply chain infrastructure
- 3) Appropriate low-cost CO2 inputs for e-fuel production must be encouraged through regulation
 - a) Unavoidable, geogenic CO2 could be given the same status as biogenic CO2, eg from bioethanol fermentation
 - b) Biomass combustion and BECCS for power generation should be challenged: it can lead to deforestation and can be replaced with renewable power generation
 - c) DAC with renewable power is a utopian vision, but it is a high-cost technology pathway at present

8 January 2023 42

sbh4 consulting

Introduction to Stephen B. Harrison and sbh4 consulting

Stephen B. Harrison is the founder and managing director at sbh4 GmbH in Germany. His work focuses on decarbonisation and greenhouse gas emissions control. Hydrogen, CCUS, e-fuels and e-fertilizers are fundamental pillars of his consulting practice.

Stephen has served as the international hydrogen expert and team leader for two ADB projects related to renewable hydrogen deployment in Pakistan and Palau. In 2021 Stephen specified more than 2GW of electrolysers for projects in Asia. In 2022, he supported the Word Bank and the Government of Namibia with the Southern Corridor Development Initiative for green hydrogen and other synthetic fuels. He also supported the IFC with a green hydrogen business case planning project in Pakistan.

With a background in industrial and specialty gases, including 27 years at BOC Gases, The BOC Group and Linde Gas, Stephen has intimate knowledge of hydrogen from commercial, technical, operational and safety perspectives. For 14 years, he was a global business leader in these FTSE100 and DAX30 companies.

Stephen has extensive buy-side and sell-side M&A due diligence and investment advisory experience in the clean-tech sector. Private Equity firms, investment fund managers and green-tech start-ups are regular clients. Industrial corporations have often sought his guidance on their decarbonisation plans or growth strategies to offer products and services to the emerging hydrogen economy and energy transition.

As a member of the H2 View and gasworld editorial advisory boards, Stephen advises the direction for the leading hydrogen-focused international publications. He also served on the Technical Committee for the Green Hydrogen Summit in Oman in December 2022 and on the Advisory Board of the International Power Summit in Munich in September 2022.

8 January 2023 44