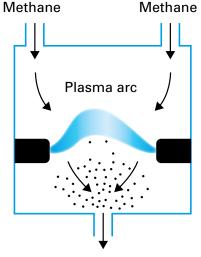
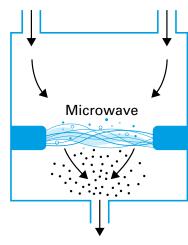

Methane


# sbh4 consulting


#### Notes:

- Combustion-heated SMR is an alternative to electrical heating
- Thermal or catalytic methane pyrolysis are alternatives
- Electrolysis is an alternative electrically powered pathway to produce hydrogen from water (AEC, AEM, PEM, SOE) or syngas from steam and carbon dioxide (SOE)
- Microwave plasma would be an alternative to dielectric microwave heating and would allow lower exit gas temperature









Methane

~95% H<sub>2</sub>, unreacted methane and carbon black powder

~95% H<sub>2</sub>, unreacted methane and carbon black powder

| ۲ | rc | ) C | e | SS |  |
|---|----|-----|---|----|--|
|   |    |     |   |    |  |
|   |    |     |   |    |  |
|   |    |     |   |    |  |

### Carbon feedstock

Target chemical reactions
Additional side reactions
Carbon produced as
Hydrogen content in
product gas
Product gas pressure
Product gas temperature

### Electrical Catalytic Steam Methane Reforming (eSMR)

Natural gas, refinery gas, naphtha or biomethane  $CH_4 + H_2O \rightarrow CO + 3H_2$   $CO + H_2O \rightarrow CO_2 + H_2$   $CO \text{ and } CO_2$ ~70% 10 to 40 bar ~850 °C

### Dielectric Microwave Catalytic Steam Methane Reforming (µSMR)

Methane from natural gas or biomethane  $CH_4 + H_2O \rightarrow CO + 3H_2$   $CO + H_2O \rightarrow CO_2 + H_2$  CO and  $CO_2 \sim 70\%$ 10 to 40 bar 500 °C to 850 °C

## Plasma Pyrolysis of Methane (Methane Cracking, Methane Splitting)

Methane from natural gas

 $CH_4 \rightarrow C + 2H_2$   $2CH_4 \rightarrow C_2H_2 + 3H_2$ Carbon black powder ~95%

Close to atmospheric pressure 1500 to 2000 °C

## Microwave Plasma Pyrolysis of Methane (Methane Cracking, Methane Splitting)

Methane from natural gas or biomethane  $CH_4 \rightarrow C + 2H_2$   $2CH_4 \rightarrow C_2H_2 + 3H_2$  Carbon black powder ~95%

Close to atmospheric pressure 1200 to 1500 °C