


sbh4 consulting

Notes:

- Combustion-heated SMR is an alternative to electrical heating
- Thermal or catalytic methane pyrolysis are alternatives to plasma
- Steam may be added to the waste gasifier to increase hydrogen yield, if waste is very dry
- For the plasma gasification reaction stoichiometry shown, methane is used as an example hydrocarbon
- Electrolysis is an alternative electrically powered pathway to produce hydrogen from water (AEC, PEM, SOE) or syngas from steam and carbon dioxide (SOE)

Process	Electrical Steam Methane Reforming (eSMR)
Carbon feedstock	Natural gas, refinery gas or naphtha
Target chemical reactions	$CH_4 + H_2O \rightarrow CO + 3H_2$
Additional side reactions	$CO + H_2O \rightarrow CO_2 + H_2$
Carbon produced as	CO and CO ₂
Product gas pressure	15 to 40 bar
Product gas temperature	~850 °C

Plasma Gasification of Solid Hydrocarbons, eg waste
Municipal solid waste, dried waste water
treatment sludge, biomass, waste paper,
tyres, etc
Hydrocarbon + $O_2 \rightarrow 2CO + 4H_2$
Hydrocarbon + $H_2O \rightarrow CO + 3H_2$
Hydrocarbon + $2O_2 \rightarrow CO_2 + 2H_2O$
CO, CO ₂ , char, slag and ash
Close to atmospheric pressure
~1000 °C

Plasma Pyrolysis of Methane (Methane Cracking, Methane Splitting)
Methane from natural gas
$CH_4 \rightarrow C + 2H_2$

 $2CH_4 \rightarrow C_2H_2 + 3H_2$ Carbon black powder

1500 to 2000 °C

Close to atmospheric pressure