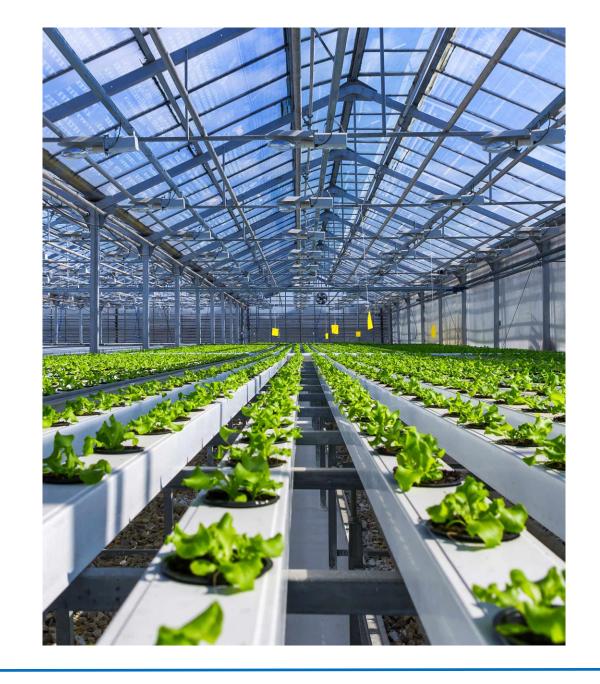
Greenhouse CO₂ dosing for enhanced crop growth

CO₂ Summit, Innsbruck, March 2019

Stephen B. Harrison

Nexant Energy & Chemicals Advisory – Principal, Germany


Thesis...

CO₂ – compliments other "green" greenhouse technologies

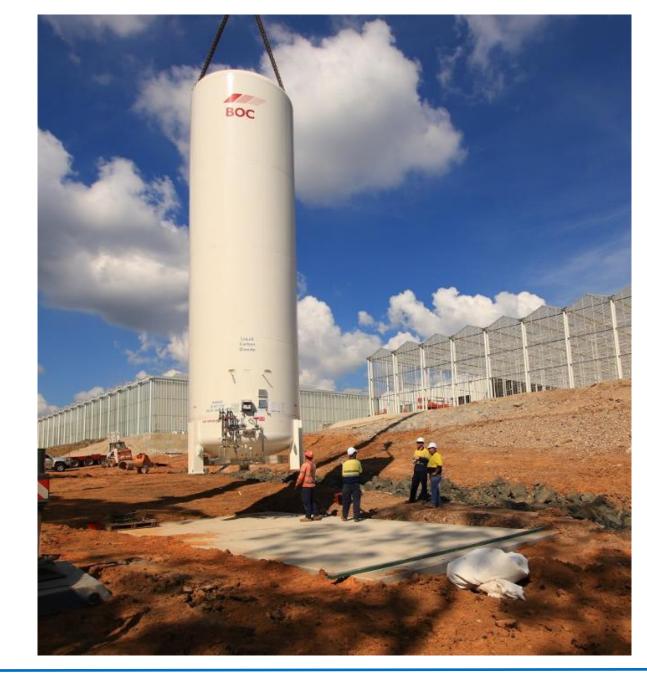
Page 2

The perfect greenhouse growing environment

- Water and nutrients
- Soil or growth substrate
- Good air circulation
- Good light, but not at night
- Warm, but not too hot
- Humid, but not too moist
- Plenty of CO₂ in the air, but not too much

Greenhouse CO₂ sources

- Combustion of cylinder propane or LPG
- Combustion of piped natural gas or LNG
- Natural gas fired CHP exhaust gas
- Direct CO₂ injection
 - Pipeline supply (NL special case)
 - Bulk liquid storage & vaporisation (standard for commercial growers)
 - Cylinder supply (small scale growers and hobby gardeners)


Combustion vs CO₂ injection - heat

- Combustion of LPG or natural gas yields humidity, CO₂ and heat
 - Win-win for the greenhouse?
- Simple, low cost solution but inflexible – no independent control of heat and CO₂ input
- Ideal for cold climates, eg Canada
- CHP for very large facilities, eg NL

BOC Australia differentiated CO₂ grades:

- 1. Beverage grade: CO₂ is an ingredient and is physically ingested
- 2. Food grade: CO₂ is in contact with the food that will be eaten, eg MAP
- 3. Environmental grade: CO₂ is introduced into the greenhouse growing environment where it will come in contact with the food in a diluted form and the food generally undergoes further processing / packaging before being consumed
- 4. Industrial grade

Typical case study: "Murphy Fresh", Australia

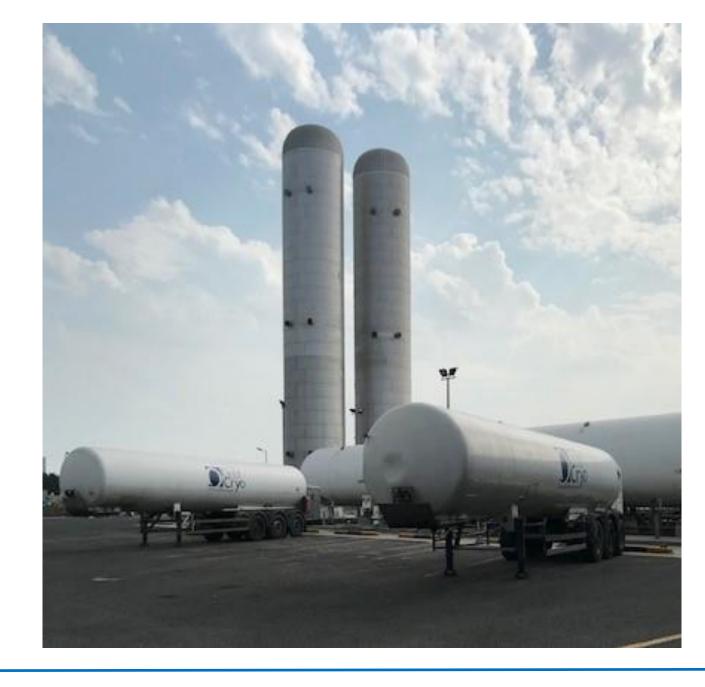
- Tomato crop
- 2.6 ha under glass
- 1500ppm CO₂ control point
- 1.2 to 1.8 Te CO₂ per day per ha
- BOC supplies "Environmental Grade" bulk liquid CO₂
- 30 Tonne tank, filled circa 2x per week

Beyond plant crops

- CO₂ is used for algae growth
- Algae is harvested for nutrition and healthcare products
- The liquor residue (after algae harvesting) can be used as a hydroponic greenhouse nutrient & water source

Growth drivers for CO₂ usage vs combustion

- CO₂ offers better process control and increased flexibility
- Desert greenhouses in the middle east and Australia are a growth phenomenon and require CO₂, but not so much heat
- Geothermal energy in Europe is providing the required heat without CO₂ as a combustion by product
- CCU in the Netherlands (from pipeline supply of refinery SynGas and bioethanol by-product CO₂) is making CHP systems redundant

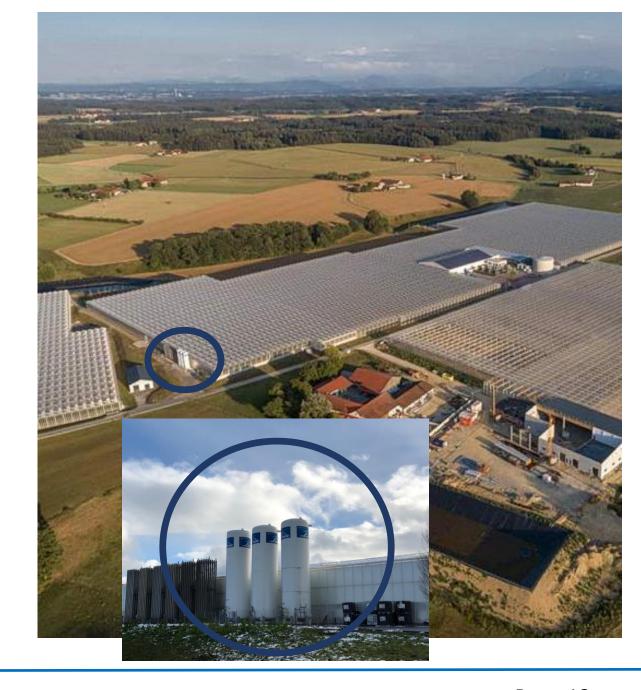


"Vertical farming" in the middle east

- Hydroponic growing can reduce water consumption by up to 95%
- Local growing reduces aviation transport environmental impact
- One grower: 70+ Ha under glass across 9 farms
- CO₂ from direct combustion would generate too much heat
- Up to 1kg CO₂ per 1kg tomato crop reported
- Example supplier: food-grade bulk liquid CO₂ from Gulf Cryo
 - Traceable product batches
 - CO₂ is a by-product of ammonia or ethylene glycol production

Seawater farming in the desert

- Sea-water desalinated with PV solar powered RO membrane desalination plant
- Evaporative cooling of pumped seawater reduces / eliminates chiller power requirements
- CO₂ from a direct combustion source would generate too much heat and be counter-productive

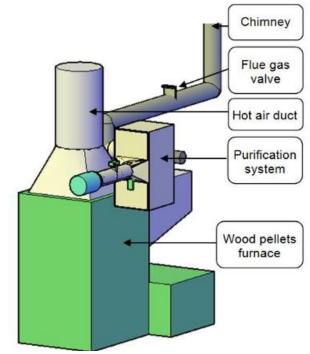

Concentrated solar power (CSP) to steam in Southern Australia

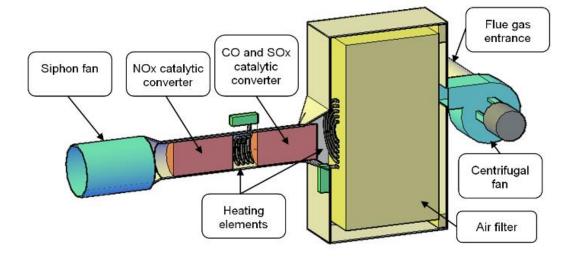
- Sundrop Farms, Adelaide
- 20 ha farm, tomato crop
- Mirrors reflect sunlight to the 126m high solar tower (Aalborg CSP)
- Energy is used for water desalination, heat and electrical power generation (via a steam turbine)
- CO₂ from direct combustion would create additional heat and be counter productive
- Air Liquide bulk liquid CO₂ supply

Geothermal growing in Bavaria

- Gemüsebau Steiner GmbH & Co KG
- Circa 20 ha under glass
- Tomato, capsicum & cucumber
- Heat from geothermal energy temperature / pressure profile ideal for warmth, not sufficient for electrical power
- Linde bulk liquid CO₂ supply
- Industrial grade CO₂
- 0.4 to 0.8 kg CO₂ per kg tomato crop

Carbon capture and re-use in NL


- OCAP pipeline delivers 400,000 TPA of CO₂ to 500 greenhouses with 2,000 ha under glass
- CO₂ from the Shell Pernis refinery (SynGas) and Abengoa bioethanol plant
- CHP is the other main CO₂ source for the NL greenhouse industry, but pressure to reduce carbon footprint
- CO₂ storage in the dis-used Q16-Maas natural gas field is proposed to smooth out the annual peak in demand (summer high, winter low) and thereby increase pipeline capacity to support growth in demand



Combustion goes green... with biomass

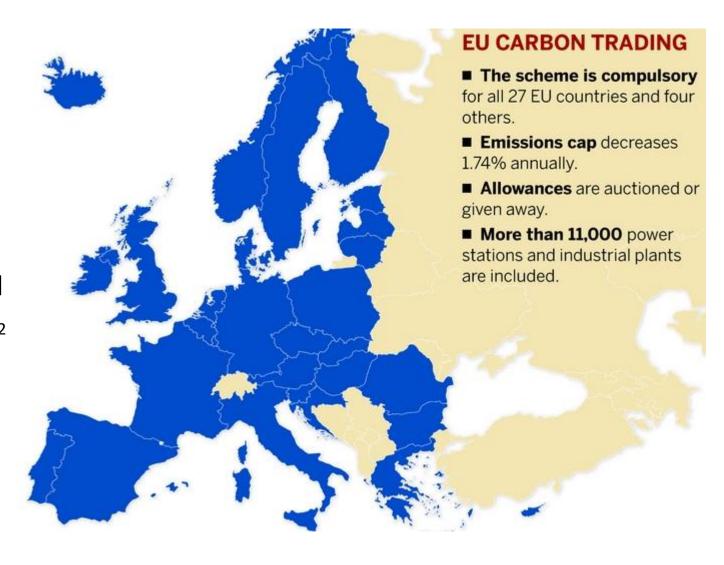
- Heat and CO₂, or CHP and CO₂ from wood chip
- Carbon-neutral fuel
- Requires flue gas clean up to avoid build up of CO, SO₂ & NOx
- Emerging solution in cooler northern climates with abundant forests, eg Canada

Conclusion - growth

- Demand for CO₂ in greenhouses is growing in many locations...
 - Geographic expansion to hot climates
 - New crops, eg algae
- CO₂ injection de-couples CO₂ & heat input to compliment green technologies, eg geothermal
- Combustion-generated CO₂ is likely to remain popular in cooler climates with abundant energy resources, eg Canada

Conclusion – commercial impact

- Opportunities for the broad industrial gases industry...
 - Propane / LPG
 - CO₂ in various supply modes
 - Pipeline infrastructure
 - Cylinders, tanks etc
 - Gas control equipment
 - Gas sensor calibration gases



Conclusion – environmental impact

- Likely to be viewed as positive
 - CO₂ Carbon capture and re-use
- Potentially viewed as carbon neutral
 - Biomass combustion for heat & CO₂
 - Biomass fired CHP for heat with exhaust gas for CO₂ dosing
- Likely to be viewed as negative
 - LPG/Natural gas combustion for CHP or heat and CO2 production

Acknowledgements – images and case studies

- BOC Chris Dolman, John Roynon
- Coregas Alan Watkins, TJ Croeser
- Gulf Cryo Mike Huggon, Sami Huneidi
- Gemüsebau Steiner Wolfgang Steiner

"Alle sagten: Das geht nicht. Dann kam einer, der wusste das nicht und hat's gemacht."

Thank you. Questions?

Stephen B. Harrison

Nexant Energy & Chemicals Advisory – Principal, Germany

