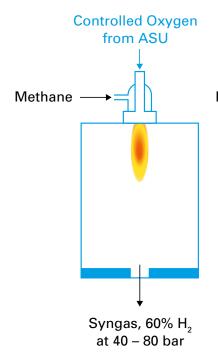
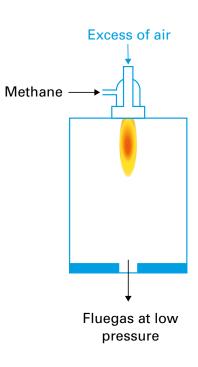

sbh4 consulting



Notes:


- Energy for pyrolysis may be from combustion of fuel, or from an electric plasma arc
- Pyrolysis diagram shown is for thermal plasma pyrolysis
- POX diagram shows non-catalytic POX

Methane Partial Oxidation –

Process	Steam Methane Reforming
Oxygen feedstock	Oxygen is supplied as part of th water molecule with the steam
Catalyst required	Yes, generally Nickel
Energy required/released	d Endothermic, requires heat inpu
Chemical reaction	$CH_4 + H_2O \rightarrow CO + 3H_2$
Carbon product	CO and CO ₂
Hydrogen content in	~70%
product gas	
Product gas pressure	15 to 40 bar
Product gas temperature	e ~850 °C

Methane Pyrolysis (Methane splitting or cracking)
None, oxygen-free process
No
Endothermic, requires heat input
$CH_4 \rightarrow C + 2H_2$
Carbon black powder
~95%
Atmospheric pressure
~ 1700 °C

POX (Gasification)	(Thermal o
Oxygen from ASU	Air fed in exc
Not for thermal POX	No
Exothermic, steam generation	Exothermic,
$2CH_4 + O_2 \rightarrow 2CO + 4H_2$ (ideal case	e) CH ₄ +2O ₂ →C0
CO and CO ₂ from side reactions	CO ₂
~60%	Zero, comple
	& H ₂ O is idea
40 to 80 bar	Atmospheric
~ 1400 °C	~1400 °C

	(Thermal oxidation)
	Air fed in excess
	No
	Exothermic, steam generation
;)	CH ₄ +2O ₂ →CO ₂ +2H ₂ O (ideal case)
;	CO ₂
	Zero, complete oxidation to CO ₂
	& H ₂ O is ideal case
	Atmospheric pressure
	1400 °C

Methane Combustion