

CO₂ Utilisation and Mineralisation

gasworld Virtual Europe CO₂ Summit 2022 Stephen B. Harrison, sbh4 GmbH 9th March 2022

Mineralisation reacts un-saturated minerals with CO₂ to form new minerals - CCUS

9 March 2022

Mineralisation reactions take place in nature... over millions of years

Limestone and magnesite – some rocks are saturated with CO₂

Cement making converts limestone (CaCO₃) to calcium oxide (CaO) and CO₂ is released

Serpentinite and olivine – ultramafic rocks can absorb CO₂ during mineralisation

Ultramafic rocks, such as serpentinite exist in many locations

Olivine is also naturally occurring in many locations

Quarrying or mining ultramafic rocks is possible for use in mineralisation of CO₂

Moving thousands of tonnes of rocks and minerals requires cost-effective logistics infrastructure

Rocks must be milled to powders to react quickly with CO₂ in mineralisation reactions

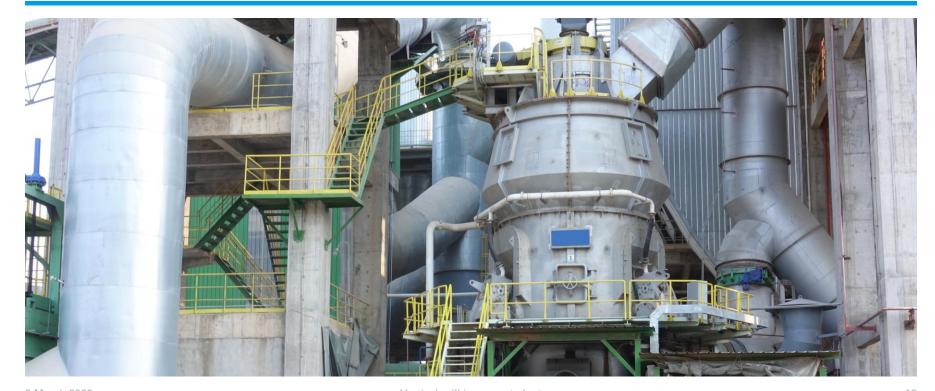
Mine tailings are a potential source of preground minerals to absorb CO₂

Iron and steel making slag contains materials that are not saturated with CO₂

Iron and steel making slag is ideal to absorb CO₂ in mineralisation reactions

Blast furnaces will need to be decarbonised, CO₂ mineralisation with their own slag can help

Waste incineration slag is also suitable to absorb CO₂ in mineralisation reactions



Cement making uses limestone rock

Energy is needed to grind limestone – using CaCO₃ powder from mineralisation reduces energy need

Valuable products can be produced through mineralisation of CO₂

Rising sea levels caused by CO₂ emissions will call for additional sea defences

Natural sea defences might need assistance from man-made solutions

How much cement and concrete will we need in the future?

CCUS – mineralisation to absorb CO₂ to generate materials that can be utilised

- Mineralisation is an example of CCUS carbon capture, utilisation and storage
- CO₂ emissions are permanently sequestered as stable minerals, mimicking a natural process that has generated rocks over millions of years
- Mineralisation reacts CO₂ emissions with mineral type materials that are not saturated with CO₂
- Ultramafic rocks, steel slag and incinerator slag are all potential materials to absorb CO₂
- CCUS mineralisation reactions can be accelerated with elevated temperature, elevated pressure, catalysts and size reduction of the solid feedstock
- The powders generated through mineralisation can be utilised commercially as chemical products
- The powders generated through mineralisation can be utilised as industrial feedstocks to conserve natural raw materials and reduce the energy intensity of mineral processing, eg cement and refractory materials
- Moving tonnes of minerals to and from the CO₂ capture site requires major logistical infrastructure shipping, barges, trains
- The ideal economic case for mineralisation is a location where three things exist in proximity: the CO2 emission source; the un-saturated material and potential to utilise the mineralisation product

If utilisation of the mineralisation products is not practical, the minerals can be safety disposed of

9 March 2022 2

sbh4 consulting

Introduction to Stephen B. Harrison and sbh4 consulting

Stephen B. Harrison is the founder and managing director at sbh4 GmbH in Germany. His work focuses on decarbonisation and greenhouse gas emissions control. Hydrogen and CCUS are fundamental pillars of his consulting practice. He has served as the international hydrogen & CCS expert and team leader for multiple ADB projects related to renewable hydrogen deployment and CCS in several Asian nations.

With a background in industrial and specialty gases, including 27 years at BOC Gases, The BOC Group and Linde Gas, Stephen has intimate knowledge of hydrogen and carbon dioxide from commercial, technical, operational and safety perspectives. For 14 years, he was a global business leader in these FTSE100 and DAX30 companies.

Stephen has extensive buy-side and sell-side M&A due diligence and investment advisory experience in the energy and clean-tech sectors. Private Equity firms and investment fund managers and green-tech startups are regular clients.

As a member of the H2 View and gasworld editorial advisory boards, Stephen advises the direction for these international publications. Working with Environmental Technology Publications, he is a member of the scientific committees for CEM 2023 - the leading international conference for Continuous Emissions Monitoring.

9 March 2022 25