

CO₂ Capture and Mineralisation

gasworld Europe CO₂ Summit 2023 Stephen B. Harrison, sbh4 GmbH 8th March 2023, Telfs, Austria

Renewable electricity can avoid CO₂ emissions from fossil fuel power generation and decarbonise many other sectors

9 March 2023

 But not all sectors can be decarbonised with green electrons!

 Some industrial processes release unavoidable geogenic, biogenic or process CO₂ emissions that must be decarbonised using carbon capture.

Geogenic CO₂ emissions from glass melting must be decarbonised

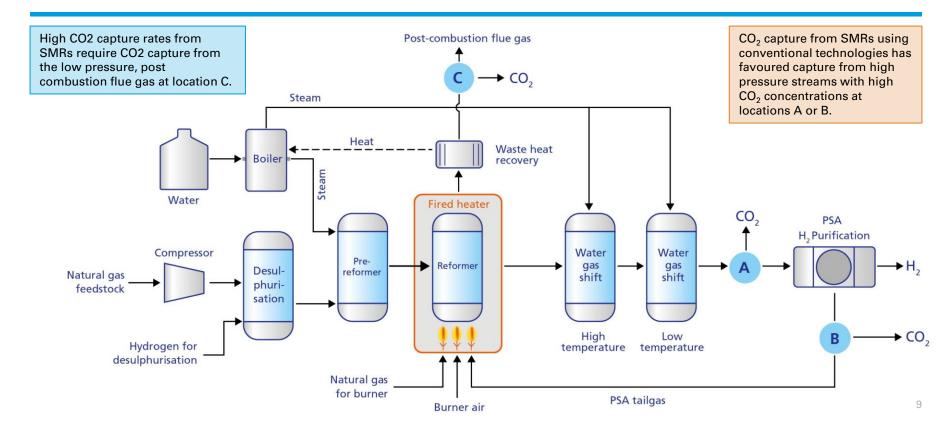
9 March 2023

Geogenic CO₂ emissions from the calcination of magnesite and dolomite for refractory materials must be decarbonised

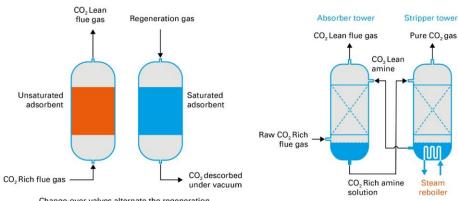
Magnesite quarry for refractory materials production

Geogenic CO₂ emissions from the calcination of limestone in lime and cement making must be decarbonised

Process emissions from iron ore reduction in blast furnaces for iron making must be decarbonised


More than 1,000 SMRs produce grey hydrogen with process CO₂ emissions, many will be decarbonised

Conventional CO₂ capture technologies benefit from high pressure, but for high capture rates, low pressure post-combustion flue gas must also be processed



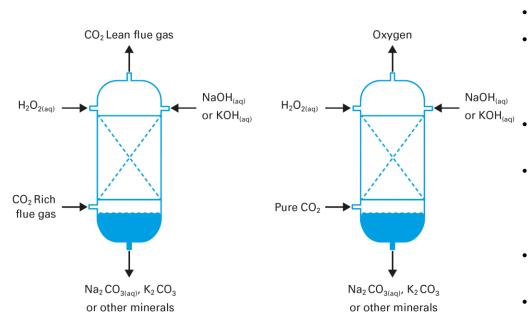
Conventional processes for CO₂ capture from SMRs and other industries require heat or power, in very large quantities

Change-over valves alternate the regeneration gas & the flue gas flow from one bed to the other.

© 2022 sbh4 GmbH

	VSA – vacuum swing adsorption	Amine Solvent with tower contactors
Separation principle	Adsorption	Absorption
Specific energy demand	1.7 GJ/t _{co2} (mostly power)	3 GJ/t _{co2} (mostly heat from steam)
Typical temperature	40°C	40-60°C in absorber, 120°C in stripper
Typical pressure	Cycling between moderate pressure and vacuum	Ambient to 30 bar
Typical CO ₂ removal	< 90 %	>90 %
Typical CO ₂ purity	< 95 %	>99 %
Typical plant size (tonnes	>1,000 - 500,000	40,000 - 4,000,000
per year CO ₂ removal)		
Technology maturity level	Commercial with some demonstrations, eg Air	Commercial from many suppliers
	Products Port Arthur SMRs, USA	

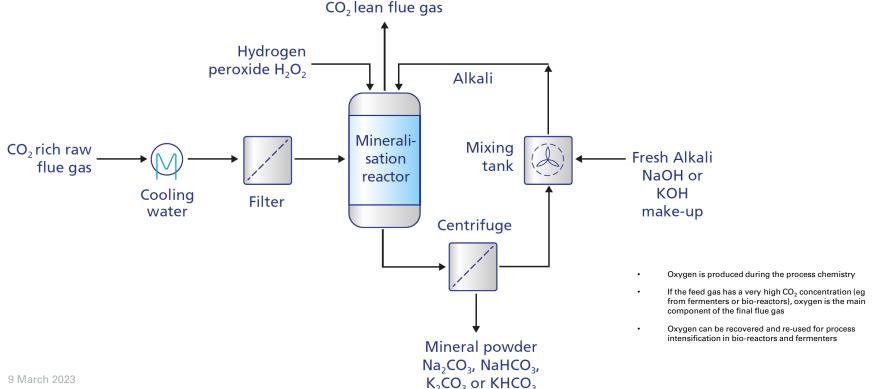
sbh4 consulting


Mineralisation of CO₂ using alkalis and the superoxide radical – a new approach to capture CO₂ to form commercial minerals

9 March 2023

Airovation Technologies patented CO₂ capture and mineralisation process – CCM

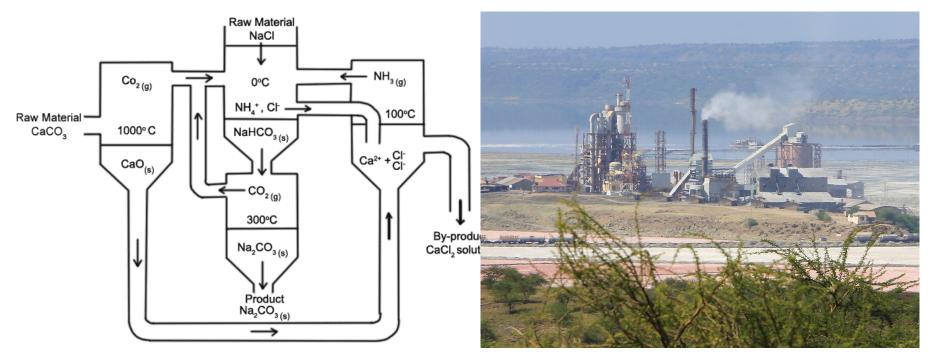
- CO₂ capture rate >95%
- Can capture CO₂ efficiently from low pressure, low concentration CO₂ streams in addition to higher pressure, higher concentration CO₂ flue gases
 - Minimal heat and power requirement at the capture site
- Uses readily available commodity chemical feedstocks: NaOH or KOH, with H₂O₂ being dosed as a minor component with catalytic properties
- Selectivity between commercial grade Na₂CO₃, K₂CO₃, NaHCO₃ or KHCO₃ as mineral products
- For very high concentration CO₂ streams (eg from fermentation and distillation), oxygen is produced (and can be utilised for process intensification in the bio-reactor)


Mineralisation of CO₂ in lime water

13

Airovation Technologies – alkali mineralisation of CO₂ using the superoxide radical

Commercial carbonate and bicarbonate mineral products can be produced



Life cycle analysis shows significant CO₂ emissions reduction due to displacement of existing energy intensive / CO₂ emissions intensive processes

The Solvay process

CCM – CO₂ mineralisation using alkalis and the superoxide radical to generate valuable materials

- Carbon capture and mineralisation (CCM) is an example of CCUS carbon capture, utilisation and storage
- CO₂ emissions can be converted to minerals with commercial value
- The powders generated through mineralisation can be utilised commercially as chemical feedstocks
- The powders generated through mineralisation can be utilised as industrial feedstocks to conserve natural raw materials and reduce the energy intensity of mineral processing, eg cement and refractory materials
- Mineralisation using alkali solutions can avoid stressing power and heat utilities at the CO₂ capture site
- Moving feedstock and minerals to and from the CO₂ capture site uses standard logistics infrastructure
- The sweet spot for mineralisation using alkalis and the superoxide radical will exist in many situations...
 - CO₂ emission source of any pressure and any CO₂ concentration*
 - Alkali and H₂O₂ feedstocks are available
 - A market for the mineralisation product exists
 - A market for the oxygen exists (if a very high purity CO₂ stream is used)

Example applications with ideal conditions: biotechnology and specialty glassmaking

- CO₂ emissions avoidance
- Biogenic CO₂ capture and conversion to bio- materials
- NaHCO₃ production for water softening, other marketable minerals possible
- O₂ production for bio-reactor process intensification

- CO₂ emissions avoidance
- Geogenic (unavoidable) CO₂ emissions capture and conversion to materials
- Na₂CO₃ production as a feedstock for glassmaking (alternatively, other marketable minerals)
- Circularity in glassmaking materials

sbh4 consulting

Introduction to Stephen B. Harrison and sbh4 consulting

Stephen B. Harrison is the founder and managing director at sbh4 GmbH in Germany. His work focuses on decarbonisation and greenhouse gas emissions control. Hydrogen and CCUS are fundamental pillars of his consulting practice. He has served as the international hydrogen & CCS expert and team leader for multiple ADB projects related to renewable hydrogen deployment and CCS in several Asian nations.

With a background in industrial and specialty gases, including 27 years at BOC Gases, The BOC Group and Linde Gas, Stephen has intimate knowledge of hydrogen and carbon dioxide from commercial, technical, operational and safety perspectives. For 14 years, he was a global business leader in these FTSE100 and DAX30 companies.

Stephen has extensive buy-side and sell-side M&A due diligence and investment advisory experience in the energy and clean-tech sectors. Private Equity firms, investment fund managers and green-tech startups are regular clients.

As a member of the H2 View and **gas**world editorial advisory boards, Stephen advises the direction for these international publications that focus on decarbonisation and CO₂ applications.

