

Tapping into new technologies to minimise carbon emissions from fossil fuelled power generation

Stephen B. Harrison, Managing Director, sbh4 consulting International Power Summit, Munich, 27th September 2022

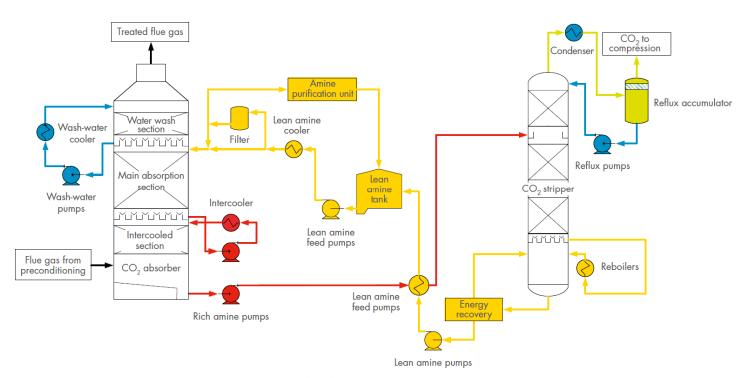
Tapping into new technologies to minimise carbon emissions from fossil fuelled power generation

- 1. Mitigating fossil fuel power generation carbon emissions with innovative post combustion CCS technology
- 2. Simplification of CCS with CO₂ capture on the IGCC oxy-fuel process with coal, Vac Res or petcoke gasification

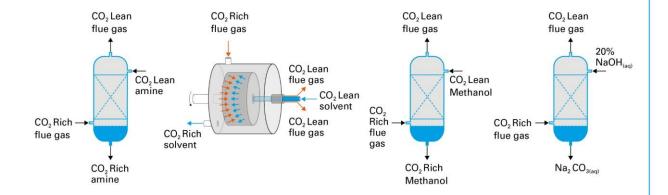
3. The Allam cycle, an oxy-fuel based advanced thermal process with CCS to achieve clean power from coal or natural gas

16 September 2022

1) Mitigating fossil fuel power generation carbon emissions with innovative post combustion CCS technology



Coal-fired thermal power generation with retrofitted post-combustion CO₂ capture. SaskPower, Boundary Dam Canada.



Amine-wash is the most used CO₂ capture technology across pre- and post-combustion applications

CCUS technologies – Absorption based

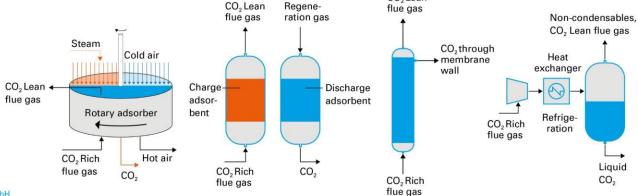
sbh4 consulting

© 2021 sbh4 GmbH

	Amine-wash with tower contactor	Amine-wash rotating disk contactor	Methanol wash	Mineralisation
Separation principle	Absorption	Absorption	Absorption	Absorption
Specific energy demand	3 GJ/t _{co2}	Predominantly electrical power, with heat	1.4 GJ/t _{CO2}	8.3 GJ ₀ /t _{co2}
Typical temperature	40-60°C	40-60°C	-40°C	<35°C
Typical pressure	Ambient	Ambient	25-70 bar _a	Ambient
Typical CO ₂ removal	90%	90% (target)	Up to 100%	90%
Typical CO ₂ purity	>99%	95% (target)	>98.5%	CO ₂ mineralisation to Na ₂ CO ₃
Typical plant size (Tonnes per year CO ₂ removal)	40,000 – 400,000	1,000 – 500,000	>100,000,000	1,000 –75,000
Technology maturity level	Commercial from many suppliers	Laboratory, eg ROTA-CAP from GTI & CCSL	Commercial, eg Linde Rectisol	Demonstration, eg SkyMine

Summary of absorption based CO₂ capture and enrichment technologies.

- Methanol wash is generally used for very large processes, eg syngas production from coal gasification.
- The rotating disc contactor uses more power and less heat than the amine wash system. It used the same solvent, only the contacting process changes. The main benefit is process intensificiaton and reduction of plant size (and capex).
- The energy requirements for mineralisation shown in the graphic are for the SkyMine process and the majority of that is for NaCl electrolysis.

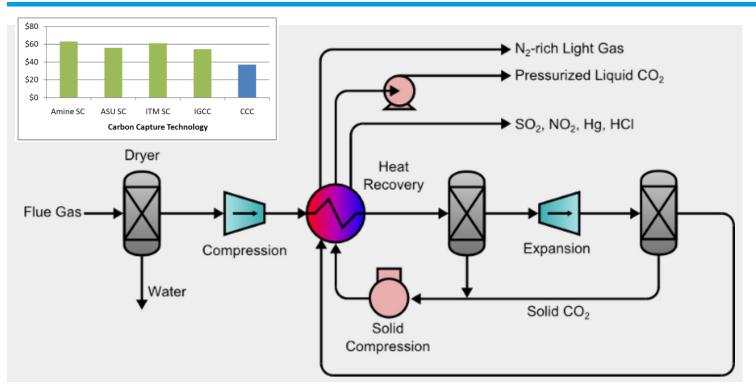

Adsorption is an alternative to absorption. VSA (like PSA or VPSA) proven for carbon capture at Air Products SMR, Port Arthur for SMR pre-combustion process gas emissions

CCUS technologies – Adsorption based & others

CO₂ Lean

© 2021 sbh4 GmbH

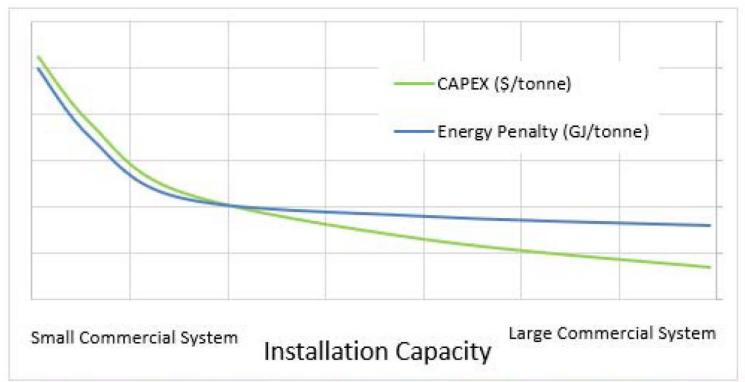
	TSA – temperature swing adsorption and desorption	VSA – vacuum (pressure) swing adsorption and desorption	Selective membrane separation	Cryogenic CO ₂ liquefaction
Separation principle	Adsorption	Adsorption	Membrane	Physical (phase separation)
Specific energy demand	1.5 GJ/t _{CO2}	1.7 GJ/t _{co2}	1.20 GJ ₂ /t _{CO2}	n.a.
Typical temperature	40-60°C	<40°C	30-50°C	-50°C
Typical pressure	Ambient	1 bar _a / 0.03 bar _a	~3 bar _a / 0.196 bar _a	20-50 bar _g
Typical CO ₂ removal	90% (target)	<90%	<80%	>99% (with CO ₂ feed >50%)
Typical CO ₂ purity	95% (target)	<95%	95%	>99% (with CO ₂ feed >50%)
Typically combined with	Standalone	Cryogenic Liquefaction	Amine wash, Cryogenic Lique- faction	VSA, Membrane (eg Cryocap)
Typical plant size (Tonnes per year CO ₂ removal)	200 – 2,000,000	1,000 – 500,000	1000 – 1,000,000	> 100,000
Technology maturity level	Pilot / Commercial, eg Husky Energy SK, Lafarge Holcim Cement, BC	Demonstration / Commercial, eg Air Products Port Arthur SMRs, USA	Demonstration / Commercial	Demonstration / Commercial, eg Air Liquide Cryocap at Port- Jérôme SMR, France



Summary of nonabsorption based CO₂ capture and enrichment technologies.

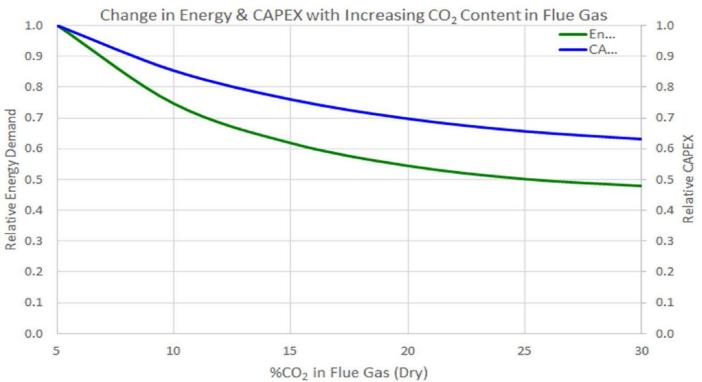
- TSA is being piloted by Svante for refinery and cement emissions.
- PSA has been implemented by Air Products for refinery SMR applications.
- Membranes have a lower TRL than TSA or PSA but have the potential to be energy efficient.
- Cryogenic separation has been / is being piloted by SES / Chart Industries on refinery and cement applications.

Chart Industries (SES innovations) Cryogenic Carbon Capture (CCC)


SES Innovations claims a 30 to 40% reduction in overall cost (capex and opex) versus amine wash.

The CCC process uses power and the amine wash uses heat, which could be waste heat or from a natural gas burner.

16 September 2022

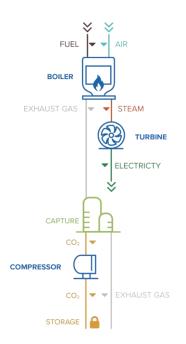


As with most CO₂ capture systems, mid- and large-scale units have favourable capex and opex per tonne of CO₂ captured

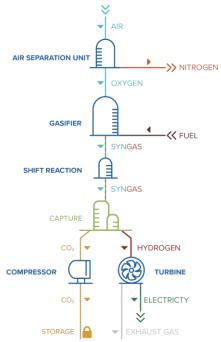
As with most CO₂ capture systems, higher CO₂ concentrations in the flue gas yield favourable capex and opex per tonne of CO₂ captured

Chart Industries (SES innovations) Cryogenic Carbon Capture (CCC)

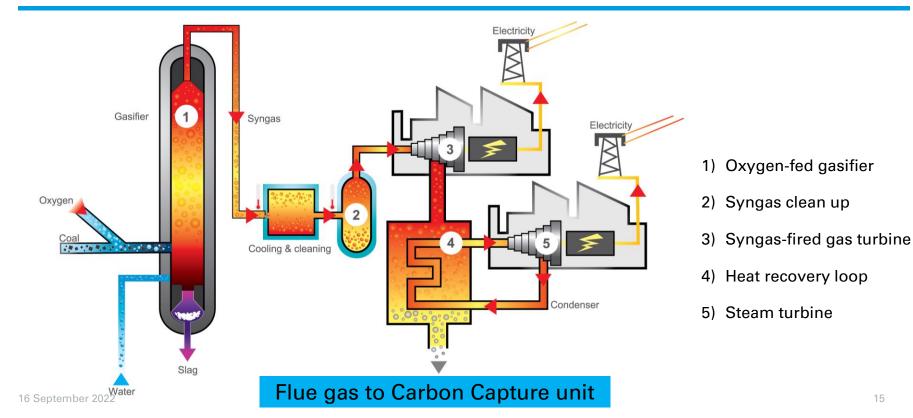
SES Innovations CCC process pilots completed



2) Simplification of CCS with CO₂ capture on the IGCC oxy-fuel process with coal, Vac Res or petcoke gasification



POST-COMBUSTION CO2 CAPTURE



PRE-COMBUSTION CO2 CAPTURE

Syngas can be used for thermal power generation in the Integrated Gasification Combined Cycle (IGCC). Oxygen feed simplifes CO₂ capture by avoiding nitrogen ballast gas flow.

Elcogas oxygen-fed coal gasification IGCC thermal power plant, Puertollano Spain

Aramco Refinery, Jazan KSA – Vac Res gasification for syngas, hydrogen, steam and 2.4 GW IGCC

16 September 2022 17

Reliance Industries Limited (RIL): 10x petcoke + coal gasifiers produce 20,000 Sm³ of syngas per day. Captured CO₂ to be used for chemical production.

Gasification

ASU

10 gasifiers 2 mscm/d syngas/gasifier O2 to gasifier 0.85 mmt/yr petcoke 1.0 mmt/yr petcoke + coal

5 trains 5250 t/d O₂/ASU

ASU = Air seperation unit

OGBL = Outside gasification battery limit

OSBL = Outside battery limit

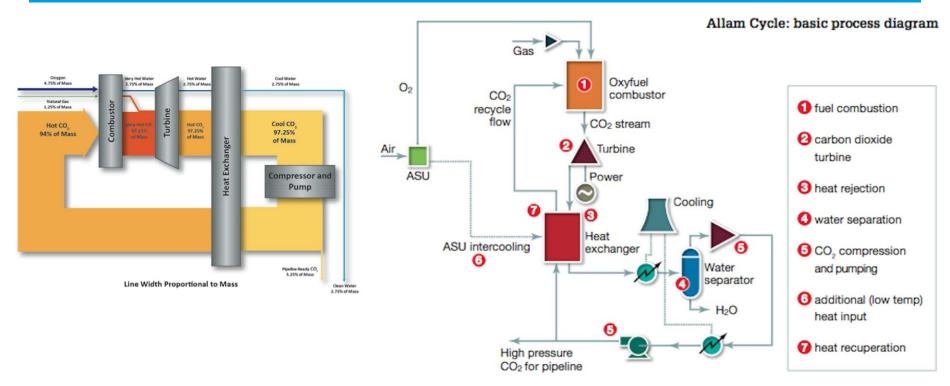
OGBL

Processing

AGR SRU/TGT SWS CO shift

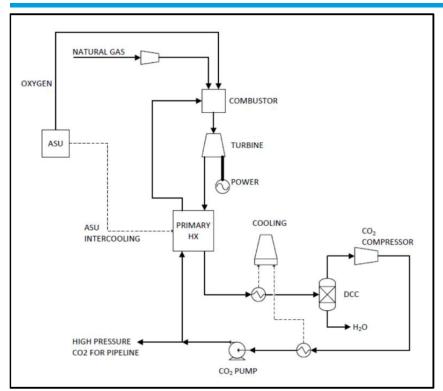
Product

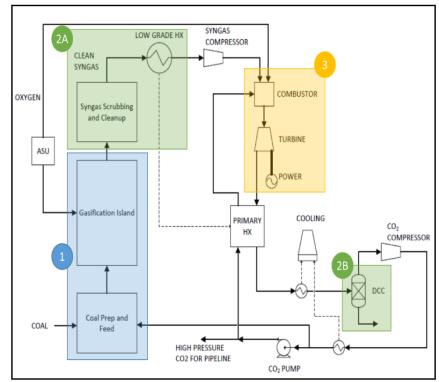
PSA for H2 SNG CO recovery



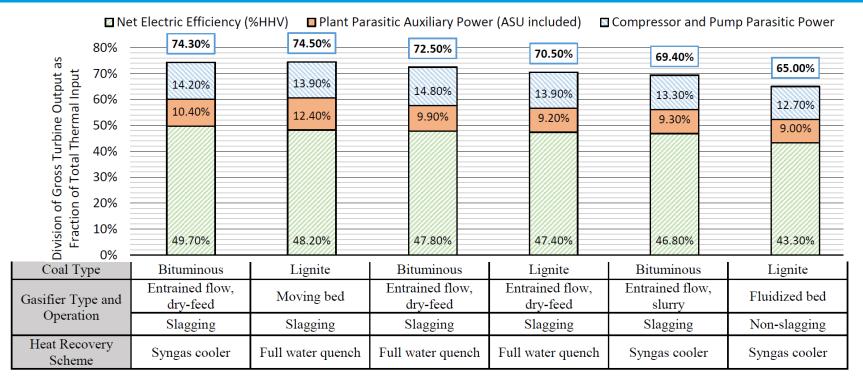
3) The Allam cycle, an oxy-fuel based advanced thermal process with CCS to achieve clean power from coal and gas

The Allam cycle – indicative mass flows and basic process flow diagram for gas feed


Allam cycle demonstration facility, Net Power LLC, La Porte USA



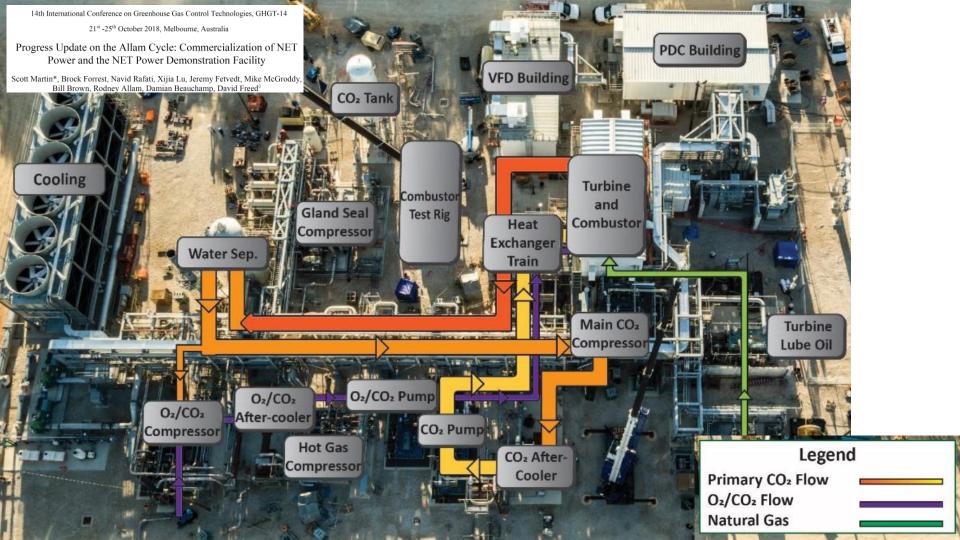
The Allam cycle – core process for natural gas and adaption for coal



Modelled efficiencies of the Allam cycle for various coal types and gasification regimes

Concluding remarks

Clean thermal power from fossil fuels - concluding remarks



- CCS can help to decarbonise thermal power generation from fossil fuels: natural gas, petcoke, Vac Res and Coal
- 2) Post-combustion CO₂ capture is the simplest retrofit option to existing power plants
- 3) Amine wash is the dominant CO₂ capture technology, but many other carbon capture technologies are emerging and will challenge its dominance
- 4) IGCC with CO₂ capture can be more cost-effective than post-combustion CO₂ capture for new-build thermal power generation
- 5) Oxygen-fed gasification for IGCC can further reduce the cost of CO₂ capture by increasing CO₂ concentration in the flue gas
- 6) Advanced thermal cycles, also with oxy-fuel combustion, such as the Allam Cycle are likely to be cost-effective clean technologies for thermal powergeneration from both natural gas and coal
- 7) CCS scheme infrastructure for CO₂ transmission and utilisation or sequestration (eg with underground injection) is a critical enabler for all of the above

16 September 2022 25

sbh4 consulting

RIL – proposal to capture and utilise CO₂ from coal and petcoke gasification

Repurpose Gasification Assets - CO₂ as an Asset

- 1. Hydrogen production from gasification provides highly concentrated CO₂ stream which provides unique opportunity to capture ~15 MMTPA of CO₂ at 30% of typical cost of carbon capture.
- 2. CO₂ can be monetized with application in following products / end-uses -
 - √ Urea production using green ammonia (nitrogen from ASU + green hydrogen)
 - √ E-products, and fuels using green hydrogen, facilitating circular carbon economy
 - ✓ Synthetic Aviation Fuel
 - ✓ Construction mineralization, Dry Ice
 - ✓ Algal oil, super proteins made through synthetic biology pathways
- 3. Biomass based gasification, coupled with CO₂ capture can potentially lead to significant cut in emissions

CO₂ as a product can be captured at much lower cost to sell as feedstock for chemicals production

Coal gasification for "coal to liquids" via syngas. Lu'an, Shanxi province, China.

4x Giga-scale oxygen plants, each 2,500 tonnes per day O_2 for coal gasification – Lu'an CTL, China

Introduction to Stephen B. Harrison

Stephen B. Harrison is the founder and managing director at sbh4 GmbH in Germany. His work focuses on decarbonisation and greenhouse gas emissions reduction. Hydrogen and CCS are fundamental pillars of his consulting practice. He has also served as the international hydrogen and CCS expert for multiple ADB projects in Pakistan, Palau and Viet Nam.

Stephen's background is in industrial and specialty gases, including 27 years at BOC Gases, The BOC Group and Linde Gas. For 14 years, he was a global business leader in these FTSE100 and DAX30 companies.

Stephen has extensive buy-side and sell-side M&A due diligence and investment advisory experience in the clean-tech sector. Private Equity firms, investment fund managers and hydrogen start-ups are regular clients.

As a member of the H2 View and <code>gasworld</code> editorial advisory boards, Stephen advises the direction for the leading hydrogen and CO_2 focused international publications. He is also on the Technical Committee for the Green Hydrogen Summit in Oman in December 2022, CEM 2023 in Barcelona and on the Advisory Board of the International Power Summit in Munich in September 2022.

16 September 2022 31